
Display, Control, Communicate…

i3 Tutorial – PID Tutorial

Introduction..3

PID Background Theory ...3

Proportional Control ...4
Bias ..4

Integral Control ...5

Derivative Control ...5

PID...6
1. Independent PID ..7
2. ISA PID..7

Tuning PID Loops..8
Ziegler-Nichols Tuning Method ..9

Programming PID Functions..11

Setting up the PID Function Block...11
Range ...13
Description...13

Tuning the Function Block..14
Tuning Operation ...15
Auto-Tune Parameters ...15
Using the Auto Tune Function...16
How Auto Tuning Works...17
Program 1. PID Digital Output ..18
Program 2. PID Analogue Output..23

 2

Introduction

The purpose of this tutorial is to demonstrate the PID function of the i3 by
programming a simple temperature controller logic diagram.

This first program will read a voltage signal and control a relay output to manipulate
the control variable. For this example we will use an i3A12X/10A01-SOO

The second program will directly read in a thermocouple value and output a 4-20mA
signal to operate the control valve. This program will use the model i3A12X/13C14-
SOH.

PID control is a Closed Loop control algorithm used in a wide range of process
control applications from temperature control to flow control. The i3 has analogue and
digital outputs to which the PID controlled result can be outputted to. With the i3, we
could communicated with a separate PID controller over Modbus or better still
incorporate this function in the i3 and have the output controlled from a PID control
function in the ladder logic program.

Every PID control loop must match the environment they operate in. This is called
tuning the system. Tuning requires some mathematical calculations or as in the i3, we
can auto-tune, where the maths can be performed automatically. Understanding the
PID process is not easy but the i3 has features that make implementing the process
straightforward.

PID Background Theory

PID is made up of 3 controlling characteristics: Proportional, Integral and Derivative,
hence PID controllers are known as three term controllers.

 PID Control

PV

SV Error Output

The three terms have difference effects on the output:

Proportional Integral Derivative
Delivers an output that is
proportional to the size of
the difference in set point
(SP) and process value
(PV).

Removes the steady state control
offsets by ramping the output in
proportion to the amplitude and
duration of the difference in SP
and PV.

Proportional to the
rate of change of the
process value.

 3

Proportional Control

A controller, which performs the action below is known as a Proportional Controller.
In practice, Error is actually a portion (often expressed in percent) of the full-range
error. In the example below, if the Error is 150 degrees, the controller might be
programmed to add only 20% - 30% of the full error value. The process takes longer
to change since it is not being driven as hard, but full control is more accurate.

The following is a graph of a typical process under Proportional control only:

Proportional control often has an Offset factor. That is, the process almost never has 0
error. This can be caused by a variety of reasons, all of which are outside the realm of
control of the Proportional function.

On the other hand, adding too much Proportional control can cause the process to
oscillate and go further out of control:

There is almost always a lag or time delay in the process. Most Process Variables
cannot change instantly. This is especially true of heat-related processes. Change in
heat can be very slow. Pressure changes and flow rates can also be tardy. These are all
due to physical factors in the system and are usually outside the realm of control of
the Process Controller.

Bias

If the offset in a process is constant, it can be removed by simply adding an equal-but-
opposite value, called BIAS. This is a fixed value, which is determined by the user but
is not changed or operated on by the PID control. Many processes can be effectively
controlled using on Proportional control and a little bias.

 4

Integral Control

Integral functions are added to reduce the offset error amount. The Integral function
works by measuring how long an error lasts and produces an additional error value
that is added into the equation. This value is tuned such that it almost completely
eliminates the Proportional Offset error.

The collecting and smoothing of values over time is known as integration. Because of
the integrating action, the Integral portion of the control does not take full effect until
the Process Variable starts to approach a steady-state (i.e., correction value become
less and less significant) value. Quick changes in error are "smoothed out" by the
integrating action, and have less effect on the process. As the Process Variable
approaches steady state, the Integral Error value becomes more important, and thus,
serves to reduce the offset introduced by the Proportional control.

The problem with Integral control is that it does not respond well to quick changes in
either the Set point or Process Variable. Although Integral control helps keep the
process at a particular Set point, if either the Set point or Process Variable changes
quickly, the Integral control has little effect.

Many processes respond well to Proportional-plus-Integral Control. In this case, Bias
is reduced to 0 (zero).

Derivative Control

The Derivative Control is introduced to handle quick changes in the process. The
Derivative Control produces yet a third error signal based on the slope of the Error, or
how much the error value changes in a given time period. When a change is first
requested, the Error Slope is relatively steep and the Derivative portion of the error is
significant. As the process reaches steady state the Error Slope will be shallow, and
the effect of the Derivative control is reduced.

 5

PID

Proportional-only control is sufficient for a large number of processes, but neither
Integral nor Derivative control alone is sufficient to control a process. Integral and
Derivative actions support the proportional action, and respond to differing conditions
in the process.

PID is an acronym for Proportional Integral Derivative. PID is a function that applies
all three methods simultaneously in order to generate the controller output value.

1. Proportional function is concerned with the raw error
2. Integral function considers how long the error has been in effect
3. Derivative function takes account of how quickly the error value is changing.

When the process is first disrupted, the Proportional component attempts to make
changes in the Controller Output. The Derivative aspect measures how great those
changes are and adds a bit more of its value, thus making the controller act more
aggressively to bring the process back to the set point. The Integral aspect has little
effect here, because the error values vary greatly.

As the process comes more into control, the magnitude of the Error begins to reduce.
The Proportional component is still driving the process towards the set point, but with
the change in errors becoming smaller and smaller, the Derivative component begins
to be reduced. The Integral component, seeing that the error value is approaching a
steady state value, begins to assert itself in order to reduce the errors due to offset.

Once the process reaches steady state, the Proportional component is producing very
small error values and is attempting to produce some offset value. The Integral
component measures how long the Error stays at one value, and produces its own
error signal to compensate. Since the rate of change in Error is small, the Derivative
component is almost non-existent.

 6

There are two common methods of implementing a PID function
1. The Independent Method
2. The ISA Method.

1. Independent PID

CVout = (Kp * Error) + (Ki * Error * dt) + (Kd * Derivative) + CVBias

2. ISA PID

CVout = Kp * (Error + (Error * dt / Ti) + (Td * Derivative)) + CVBias

dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time
Td = Derivative time

The Independent PID is considered the standard and is easier to tune. Although both
methods provide the same results.

CVBias is an additive term separate from the PID components. This is most
commonly used where only the Proportional (Kp) term is used (a proportional-only
element). This forces CV Output to some non-zero value when the Process Variable
(PV) is equal to the Set point (SP). CVBias is generally not used (set to 0) if the
Integral term is used.

 7

Tuning PID Loops

The object of a PID loop is, given a change in either the Set point SP or Process
Variable PV, generate a Control Variable CV such that PV is driven towards and
eventually stabilized at a value equal to the SP. This is done as rapidly as possible and
with minimum fluctuations about the final value.

In order to meet these goals, the PID system must be tuned. That is, proper values
must be selected for Kp, Ki, and Kd such that for any disruption in the process the
process is returned to the desired value as quickly and as accurately as possible. These
two requirements are usually mutually exclusive. A process can be controlled quickly
but with less accuracy, or slower but more accurate. It is up to the process engineer to
determine the optimal compromise between these two points, and make adjustment to
the PID function (tune it) accordingly.

PID Tuning is considered difficult.

Users often use the "trial and error" method of tuning. Adjust the Kp, Ki, and Kd
parameters and watch the process handle the next disturbance. If the control of the
process is adequate, quit. Otherwise, tweak another control and try again. This process
is time-consuming.

Simply put, the Kp (proportional) control is the major factor in controlling the loop.
Most loops can be brought into approximate control using Proportional only. The first
step is to disable the Integral and Derivative controls and bring the process into
alignment using only the Proportional Control. Using Proportional only usually
results in an Offset Error. That is, the actual Process Variable value differs from the
Set point value by a small, relatively constant amount. If the offset is small and
remains constant, it can often be cancelled using the CVBias value. Otherwise, set
CVBias to 0 (zero) and try using Integral control.

The Ki (Integral) control was intended to reduce this error by adding an offset that is
based on how long a specific error is present. The longer the error is present, the more
effect the Integral control has. So with the Proportional Control properly set, begin to
increase the Ki until the error is minimize, if not completely eliminated.

Most processes respond well to just these two adjustments, proportional and integral.
However, one can find that the PV "wobbles" too much around the final value. This is
known as a damped oscillation. Kp need to be adjusted just below the point that the
process begins to oscillate and goes further out of control.

These oscillations can sometimes be further damped using the Kd (Derivative)
control. The Derivative Control works on how fast the PV (and thus the resulting
error) changes. The maximum rate of change occurs just after any disturbance, which
is also when the Kp is oscillating. By increasing the Kd, the oscillations can be further
damped to bring the process into control more quickly.

 8

Ziegler-Nichols Tuning Method

PID tuning depends on the user's knowledge of the process to be controlled. Kp, Ki,
and Kd are determined by the processes' characteristics, which must be understood
before tuning can be performed.

There are two things that must be known about the process:

1. How big is the change in Process Value when Control Value is change by a

fixed amount?

2. How quickly does Process Value change in response to a change in Control

Value?

The change in PV is simply measured. When compared with CV using a simple
equation, the OPEN LOOP GAIN (K) of the system is obtained:
Open Loop Gain (K) = PVstep / CVstep
If a step change in CV causes an identical step change in PV, the Open Loop Gain (K)
is one (unity). If a step change in CV causes a step change in PV that is less than CV,
the Open Loop Gain (K) is less than 1. If a small step change in CV causes a large
change in PV, the Open Loop Gain (K) is greater than 1.

Most processes won't see any change in PV for some time after CV changes. This is
called Pipeline Delay Time (Tp) or Dead Time. (Not to be confused with DEAD
BAND.)

The Time Constant (Tc) of the process is defined as the time between when the PV
first starts to change and the time when PV reaches 63.2% of the expected final PV
value.
Find K and Tc
Some experimenting must be done in order to obtain the desired values. This is best
done by placing the PID Element into the MANUAL mode, make a small change in
CV, and then plot the change in PV. For slow processes this can be done manually,
but a strip chart recorder might be helpful.

The change in CV is large enough to cause a measurable change in PV but not so
large as to completely disrupt the process being controlled.

The plot looks similar to the above graphic, and K, Tc, and Tp are easily measurable.
Tune the Process

 9

If K, Tc, and Tp are known we can use the following equations can be used to
estimate starting values for Kp, Ki, and Kd in a Proportional / Integral / Derivative
(PID) control:

Kp = (1.2 * Tc) / (K * Tp)
Ki = (0.6 * Tc) / (K * Tp * Tp)
Kd = (0.6 * Tc) / K

Tc and Tp are time units. It is important to ensure that both are expressed in identical
units (i.e., milliseconds, seconds, hours, or whatever time frame is appropriate to the
process). However, for use in the i³ Configurator PID TUNE dialog, these values must
be expressed 10mS intervals (e.g.: "100" = 10mS * 100 = 1 second).

If Proportional-only control (Ki and Kd = 0) is desired, use the equation:

Kp = Tc / (K * Tp)

Or for Proportional / Integral control (Kd = 0), use the equations:

Kp = 0.9 * Tc / (K * Tp)
Ki = 0.3 * Kp / T p

These equations are known as the Ziegler-Nichols tuning method, which were
developed by John Zeigler and Nathaniel Nichols in the 1940's.

 10

Programming PID Functions

We are going to write two programs that use the PID functions to control a heater to a
set temperature. The only difference in the two programs will be that the first will
have an analogue output and the second will have a relay digital output. Both
programs will read an analogue signal in that represents a temperature. The user will
be able to enter a set point and view the current value.

Setting up the PID Function Block

There are two different types of PID Independent and ISA. The only difference is the
equation they perform. We will use the Independent function block.

Independent PID

CVBiasDerivativeKddtErrorKiErrorKpCVout +++=)*()**()*(

ISA PID

CVBiasDerivativeTd
Ti
drErrorErrorKpCVout +++=))*()*((*

 11

PID Address This the base address of fifteen consecutive WORD (%Rxxxx)

registers that the PID element uses to store its parameters.
Set point This is the location of the User-defined Process set-point value.

 This value cannot be a decimal constant
Process Variable This is the location (typically %AI) of the Process Variable

value coming in from the process. This value cannot be a
decimal constant.

Control Variable This is the location (typically %AQ) of the Control Variable
value going out to the process.

Manual Input This register is a Boolean register, presumably %T. This
switches off the PID control and the CV is updated by the Up
and Down Input.

Up Input This register is a Boolean register, presumably %T. Used to UP
the CV in manual mode

Down Input This register is a Boolean register, presumably %T. Used to
down the CV in manual mode.

Support Auto Tune Select this option to enable support for auto tune PID.
Auto tune settings Click on this button to set the registers and options used for auto

tuning. See PID Auto Tune for more information
Tune Click on the TUNE button to invoke the PID Element Tuning

Dialog

The initial PID Address specified is only the starting register and the following
consecutive 15 registers are used. The registers are the same for both PID functions.

 12

Each register has a specific parameter setting.

Offset Parameter Units Range Description

0 Sample
Period

10 mS 0 to 65535 The shortest time, in 10mS increments,
allowed between PID solutions.

1 Dead Band
+ve

PV
Counts

0 to 32000 Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required. Both should be set to 0 (zero) until
the PID is tuned.

2 Dead Band
-ve

PV
Counts

0 to 32000 A Dead Band might then be necessary to
prevent small changes in CV values due to
slight variations in error.

3 Proportional
Gain
(Kp)

Percent 0 to 327.67% Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain (gain of
1).

4 Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10 mS.
In the PID equation this has the effect: Kd *
delta Error / dt.

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per

second

Entered as a number of repeats per second,
effectively the integration rate. In the PID
equation this has the effect: Ki * Error * dt.

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to the output
before the rate and amplitude clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV Upper
Clamp must be more positive the CV Lower
Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

Setting these to 0 and 1, can allow us to use a
relay output.

9 Minimum
Slew
Time

Seconds
of
full
travel

0 to 32000
seconds to

move 32000
CV counts

Determines how fast the CV value can
change.

10 Config Word N/A N/A Internal Use - Do not modify this value.
11 Manual

Command
CV
Counts

Tracks CV in
Auto mode;
sets CV in

Manual Mode.

In the Automatic mode this register tracks the
CV value. In the Manual Mode, this register
contains the value that is output to the CV
within the clamp and slew limits.

12 Internal SP N/A N/A Tracks SP in . Used by iHMI
13 Internal PV N/A N/A Tracks PV in . Used by iHMI
14 Internal CV N/A N/A Tracks CV out . Used by iHMI

Each PID element must use a distinctly separate Reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.
i.e. the same register should not be reused. There is however no limit on how many
PID functions can be used only the memory limitations (9999 registers).

 13

Registers at offset 0 through 9 must be configured before the PID element is used and
can be these registers can be manipulate by the ladder program as well.

The easiest method of configuring a PID element is to Auto-Tune the device. This can
take a lot of time however and requires the i3 to be situated in the application. These
registers can, however, be manipulate by the ladder program as well.

Tuning the Function Block

When the tune input goes high, the PID function starts the auto tune process. If power
is removed from the tune input before the tuning process is complete, the auto tune
procedure is aborted. Note to eliminate the anti-windup feature of the PID loop, the
integral term is set to zero when the auto tune starts.

When the auto tune process completes, the done output goes high and the PID loop
continues running with the newly calculated coefficients.

The PID Tuning Dialog allows the PID loop to be tuned. Once acceptable values are
determined, these values can be moved into the PID Element registers using the First
Scan (FST_SCN, %S01) bit and Register Move elements or by using the
downloadable set points.

Usually unchecked.
If checked
MANUAL and SP
VALUE boxes are
enabled. This allows
for modifications for
tuning purposes.
The controller does
not get these inputs
from as specified in
the function block,
but uses the values
entered from this
tuning screen.

After any of these items is changed, the UPDATE CONTROLLER button
must be pressed to send the new data to the controller.

 14

Tuning Operation

A Boolean AUTOTUNE input starts the auto tuning cycle and needs to remain high
until the cycle has been completed otherwise the tuning will stop. Once the cycle has
been completed the auto tune done output will go high. Once the cycle has been
completed the input can be removed and the done output will reset.

At the conclusion of the AUTOTUNE cycle, the specified controller coefficients are
updated and the AUTOTUNE DONE output from the block is set to true. The PID
block now reverts to the previous state, either automatic or manual. The block will
then be ready for another auto tune cycle. The new tuning coefficients are available in
their respective registers.

Auto-Tune Parameters

The auto tuning function is an addition to the PID blocks and all other parameters are
the same. Auto tune PID allows the PID controller to perform an experiment on your
process and use the results to calculate PID coefficients that match your process and
the desired PID operation. When auto tune PID is enabled additional parameters need
to be set.

Defines how far
above and below
the set point the
process must go
when performing
the auto tune
experiment. This allows the auto

tuning experiment to
change the output based
on 2/3 the set point

This option defines the
relative speed of the PID
loop once it is tuned.

This option allows
the auto tune
procedure to
calculate terms for
PID, PI or P terms.

An output bit is
set by the function
when the auto
tune is complete.

Define an input
bit that controls
when the function
should start the
auto tune.

 15

Using the Auto Tune Function

Prior to auto tuning it is necessary to partially set up the PID block as before.

Specifically the following parameters need to be set correctly:
• Set point
• Sample Period
• Upper and Lower Clamp
• Error Term
• Output Polarity

Please note the previous values of the proportional, integral, and derivative
coefficients do not affect the results of auto tuning.

The default settings for the auto tune cycle produce Proportional, Integral, and
Derivative coefficients using the standard Ziegler-Nichols rules. This is suitable for
many typical processes with delay and one or two equal lags and with a fairly quiet
process variable.

Non-default settings may be selected to improve the auto tuning behaviour in certain
circumstances. These selections only affect the generation of auto tuning coefficients.

The controller type field defaults to PID but can be set to PI, Proportional/Integral, or
just P, Proportional control.

• PI control tends to be more stable with processes that do not have any delay,
just lags.

• Full PID control can give better response for processes with delay.

The full PID tuning rules assume that the process has a moderate delay and may not
be suitable for other processes. These modes are produced by the auto-tuning
algorithm by setting the unused coefficients to zero. These may subsequently be
manually increased to enable the other modes.

The response field can be used to increase the controller damping to decrease
overshoot and ringing. For a typical Ziegler-Nichols process

• FAST response produces some overshoot and a 4:1 decay ring down.
• MEDIUM produces a slight overshoot.
• SLOW produces no overshoot.
• With processes that are outside the optimum range for Zeigler-Nichols rules,

the VERY SLOW response may be necessary for adequate response.

During auto tuning the algorithm detects the process passing above and below the
active set point. Hysteresis is applied to the set point to avoid false indications due to
process noise. The default hysteresis band is 0.04% of full scale. For noisy processes,
this may need to be increased for proper auto tuning. The NOISE SUPPRESSION
setting results in the following noise rejection values.

 16

Higher noise rejection values also cause the auto-tuning algorithm to select somewhat
slower, more stable coefficients. For noisy processes, it is also recommended that PI
rather than PID control be selected.

How Auto Tuning Works

The auto tuning function block performs and experiment on the process to be
controlled and uses the results to calculate the PID coefficients. While auto tuning the
output is moved back and forth between the upper and lower clamps. The time for the
process to move from a percentage (based on noise filtering) above and below the set
point is recorded along with overshoot and undershoot readings. Once this experiment
is complete, the data collected is used to calculate the new PID coefficients.

 17

Program 1. PID Digital Output

In this example we are going to use the PID function to control a Relay output on the
i3. This could then be used to switch on a simple heating element in a Temperature
control system.

Configure the I/O

Connect the i3 (either a i3A12X/10A01-SOO or a i3A12X/13D03-SCH) relay model
to the computer and click on the icon to configure the I/O. Select the Auto
configure button so that the correct i3 is selected, then click on the button to configure
the inputs.

The relay model i3 ‘s don’t have a thermocouple input so I have used one of IMO’s
TCHead Thermocouple transmitters to covert the signal to mA’s.

Ladder Logic Programming

To manipulate the digital output we are going to clamp the upper and lower CV limits
to 10 and 0. The PID Function will manipulate the CV value between 0 and 10 to
control the process. This CV output will be inputted to a compare function block and
if it is greater than 5 the Q1 will be high, if it is less Q1 will be off. There are two
ways to adjust the clamp values, the first is to enter the values in the associated
registers directly and the second is to edit the clamp values through the “Tune” menu.

Insert a NO contact and assign it to “always on” %S7. We will use this to power the
PID function. Next select the PIDIND function from the Special Operations menu
and insert it into the ladder logic.

 18

Double click on the function to open the
properties page and set up the following values.

Set up the Auto Tune by clicking on the “Auto Tune Settings” button.

We will then use the output CV from the PID function block in a Greater Than or
Equal to function. If it is greater than or equal to 5 then the output will be high, if it is
less than 5 then the output will be low. Assign a NO coil at the end of the GE function
to %Q1.

Add an indicator to the signal when the tuning process has finished. Assign %M1 to a
NO contact switching on an output coil %Q2.

 19

To make the screen more user friendly we are going to scale our set point and present
value analogue input from 0-32000 to 0-100 degrees Celsius.

Screen Editor Programming

On the user screen we need to have a button to switch the auto-tuning feature on, and
lamp to indicate when it has finished. We will also display the raw analogue input
value (0-32000) and the scaled value (0-100*C), as well as having a data entry for the
scaled Set Point.

To achieve this we need to insert 3 numeric data functions, making only the Set Point
editable. Enter the functions by clicking on the icon . Click them onto the centre
of the screen and then move them to where you wish them to be positioned on the
screen. Double click on the boxes to enter the properties of each function.

Address Legend Digits Units
%Ai1 Ai1 5 digits
%R20 Temp 3 digits *C
%R21 SP 3 digits *C

For the tuning features assign one button to start / stop the tuning and a lamp to %M1.

Address Legend Type
%M1 Auto-Tune Toggle button
%M2 none Round lamp

The screen should now look similar to the one below.

 20

Running the Program

Download the program into the i3 as normal and the program will run as expected if
you have calculated the P,I & D values. If not by double clicking on the PID IND
function to open up it’s properties you can now select to TUNE the i3 controller.

New values can be
entered for the P, I
& D then click
“Update
Controller” to send
them to the i3.

The sample period,
dead bands and all
of the other 0-15
registers used can
be altered here
then the controller
can be updated.

We have
clamped the
output to
between 0
and 10

 21

Monitoring the process is also made easy as the SP, PV and CV values can all be
tracked as well as the error signal. These graphs can also be printed out.

Please see PIDExample-relay-op.csp program file for the i3.

 22

Program 2. PID Analogue Output

Using the i3A12X/13C14-SOH with it’s thermocouple input and Current or Voltage
analogue output we can repeat example 1 but provide the output with a more accurate
PID control.

Configure the I/O

Just as before, connect the i3 and Auto-Configure the unit. This time however we are
going to configure Ai1 to a K-type thermocouple and the Aq9 (1st analogue output) to
a 4-20mA signal.

Ladder Logic Programming

We just need to change the output from the PID function to the analogue output
address %Aq9 and adjust the clamps to have the full range 0-32000.

 23

We also have no need for the GE function and we need to adjust the scaling function
blocks. The code should now look like the one below.

Screen Editor Programming

The only change we are going to have on the screen is to add the true register value of
the output. Enter a new numeric function and assign it to %AQ9, giving it the legend
“Aq9”.

The screen should now look similar to the one below.

 24

Running the Program

The program will operate in a very similar fashion and the tuning functions will still
apply. The only difference will be the output will be more controlled and accurate.

After Auto-
tuning the
newly found
values of the
P, I and D
values have
been inserted
into the
registers.

Please see PIDExample-ana-op.csp program file for the i3.

 25

 26

	Introduction
	PID Background Theory
	Proportional Control
	Bias

	Integral Control
	Derivative Control
	PID
	1. Independent PID
	2. ISA PID

	Tuning PID Loops
	Ziegler-Nichols Tuning Method

	Programming PID Functions
	Setting up the PID Function Block
	Parameter
	Units

	Range
	Description

	Tuning the Function Block
	Tuning Operation
	Auto-Tune Parameters
	Using the Auto Tune Function
	How Auto Tuning Works
	Program 1. PID Digital Output
	Configure the I/O
	Ladder Logic Programming
	Screen Editor Programming
	Running the Program

	Program 2. PID Analogue Output
	Configure the I/O
	Ladder Logic Programming
	Screen Editor Programming
	Running the Program

